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SUMMARY

The infectivity of pathogenic microorganisms is a key factor in the transmission of an

infectious disease in a susceptible population. Microbial infectivity is generally estimated from

dose–response studies in human volunteers. This can only be done with mildly pathogenic

organisms. Here a hierarchical Beta-Poisson dose–response model is developed utilizing data

from human outbreaks. On the lowest level each outbreak is modelled separately and these are

then combined at a second level to produce a group dose–response relation. The distribution

of foodborne pathogens often shows strong heterogeneity and this is incorporated by introducing

an additional parameter to the dose–response model, accounting for the degree of overdispersion

relative to Poisson distribution. It was found that heterogeneity considerably influences the shape

of the dose–response relationship and increases uncertainty in predicted risk. This uncertainty is

greater than previously reported surrogate and outbreak models using a single level of analysis.

Monte Carlo parameter samples (a, b of the Beta-Poisson model) can be readily incorporated

in risk assessment models built using tools such as S-plus and @Risk.

INTRODUCTION

Microbial risk assessment provides a scientific means

for prospectively estimating the safety of foods and

activities that determine human exposure to patho-

genic microorganisms. Public trust in the scientific

reliability of microbial risk assessment apparently is

high, as various countries are developing legislation

based on risk standards, e.g. regarding drinking water

safety. Risk assessment has also been adopted as a

means for safeguarding the public against the hazards

associated with international trade of foodstuffs. In

this area of ever-increasing implementation of risk

assessment we need to extend and improve its scien-

tific basis. One area of quantitative risk assessment

which has received relatively modest attention is

dose–response assessment. This is partly due to data

restrictions, as dose–response assessment has so far

been based on experimental studies, mostly on human

volunteers or animal studies. For risk assessment of

organisms where a dose–response relationship is not

available, a surrogate dose–response relationship has

been chosen, more or less arbitrarily. A surrogate

could be either a pathogen with some similarity to the
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missing pathogen (e.g. Shigella for E. coli O157:H7

[1], with ID50=1128), or a surrogate host (e.g. rabbits

for E. coli O157:H7 [2], with ID50=5.7r105).

Incident or outbreak reports are often the first

indication that any particular microorganism may be

a health hazard. As such epidemiological reports deal

with human patients with illness symptoms linked

to exposure to some microbial hazard they can be

considered prime evidence for the infectivity and/or

pathogenicity of the pathogen at hand. Exposure is

often not known quantitatively, but there are excep-

tions : sometimes food inspectors can obtain a sample

of the implicated food and estimate the pathogen

concentration. In a previous paper we investigated

such an outbreak of E. coli O157:H7 in detail and

could infer a dose–response relation [3].

However, a single outbreak provides limited infor-

mation: usually the dose range is small, not several

orders of magnitude as in experimental studies.

Strachan et al. [4] collated data from eight different

human outbreaks of E. coli O157:H7. These data

showed considerable variation in observed attack

rates, and a Beta-Poisson model could only be fitted

by incorporating overdispersion in the form of a beta-

binomial likelihood.

The observed variation between outbreaks is

caused by many characteristics that may be different.

The exposed population may differ, e.g. in age, or

prior experience (acquired immunity to the patho-

gen); the vehicle may be different (different food, dif-

ferences in preparation of the food) ; the pathogen

may have a different history prior to its presence in the

food. For such a meta-analysis a hierarchical model

is appropriate, that can explicitly incorporate vari-

ation in infectivity between outbreaks.

In real world situations exposure cannot be as-

sumed completely homogenous, as in experimental

studies. The pathogen may be distributed unevenly

in the vehicle (e.g. food or water) and the quantity

ingested may also vary. This heterogenous exposure

may thereby affect the dose–response relationship.

Here a hierarchical single-hit dose–response model

is developed for outbreak data and compared with

previously published models. The importance of het-

erogenous exposure is evaluated by its incorporation

in the dose–response model.

OUTBREAK REPORTS

Table 1 lists numbers of exposed and affected subjects

from eight different incidents, and estimated ex-

posures in each case. Various transmission routes

were implicated, including hand-to-mouth contami-

nation, various foods, and water. Estimated exposure

in these incidents covered a range of doses, from a few

bacteria to 10 000 c.f.u. ; attack rates ranged from

0.5% to 80%. Similar attack rates appear to corre-

spond to different doses (sheep faces, hamburger) and

similar doses correspond to different attack rates

(salad sauce, salami), indicating heterogeneity in

infectivity among incidents. In the following sections

detailed descriptions of the outbreaks are given.

Heterogeneity in exposure to microbial pathogens

may be described by assuming any individual sample

originating from a Poisson distribution with ran-

dom parameters, for instance because of a varying

Table 1. Data from incidents involving E. coli O157:H7 (VTEC): vehicle, estimated dose, dispersion parameter,

numbers exposed and infected and/or ill

Reference Vehicle

Estimated

Exposed
(N)

Infected
(K)

Attack
rate (%)

Dose (c.f.u.)
CVing

Dispersion
(r)

New Deer, UK Sheep faeces, soil 1.4r101 0.120 228 20 8.7

Morioka, Japan Salad, sea food sauce 3.1r101 100.0 871 215 24.6
Oregon, USA Deer jerky 1.0r104 0.305 12 10 80.0
Kashiwa, Japan Melon 1.1r103 100.0 71 32 45.1

Washington, USA Hamburger 1.83r102 0.215 5634 398 7.1
California/Washington, USA Salami 1.56r101 1.603 2778 17 0.6
Illinois, USA Water 8.0r101 100.0* 2350 12 0.5

8.0r101 0.100* 2350 12 0.5
Wyre, UK Cheese 3.8r102 11.23 360 2 0.6

* Two scenarios : low and high dispersion.
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concentration of the pathogens in the contaminated

foodstuff, or because of a varying intake in exposed

consumers. A Poisson-gamma mixture provides a

simple and flexible model : individual exposure is

negative binomial, while extra-Poisson variation is

described by a single additional parameter, the shape

parameter of the gamma component, henceforth

called ‘dispersion’. Strong dispersion corresponds to

clustered exposure : most consumers then ingested low

doses, whereas few are likely to have ingested the

majority of the pathogens present in the contaminated

foodstuff.

For each of the outbreaks listed in Table 1 we have

attempted to find a value for the dose (average

number ingested) and the dispersion parameter (see

Heterogenous inoculum section below). Avaliable

information about the concentration of pathogens

in ingested media was used. If microbial counts or

presence–absence data were available maximum-

likelihood methods were used. Alternatively, other

statistics (average, quantiles) were used to calculate

gamma distribution parameters. The same procedure

was applied to describe consumed volumes. Then

the product of the two gamma random variables

(concentration and intake) was expressed as a single

gamma distribution, by numerical approximation of

average dose and dispersion. The following is a brief

account of the available information for each out-

break, and the choices made in estimating parameters.

Full information can be found in the listed references,

particularly in Strachan et al. [4].

New Deer, UK. A scout camp, with 20 cases (out of

228). The probable route of E. coli O157 transmission

was via hand contact with mud contaminated by

sheep shedding E. coli O157. Strachan et al. [5]

modelled the transfer of E. coli O157 from sheep to

the soil and subsequently to humans and calculated

an average dose of 14 c.f.u. Counts in soil samples

collected on site showed strong dispersion, with an

estimated dispersion parameter of 0.120.

Morioka, Japan. Contaminated school lunch result-

ing in 208 children and seven adults (out of 828 pupils

and 43 teachers, respectively) infected with E. coli

O157 [6]. Teunis et al. [3] estimated the average dose

at 31 c.f.u. and argued that in this case there may have

been little overdispersion. We therefore arbitrarily set

the dispersion parameter at a value of 100.0.

Oregon, USA. Home-made venison jerky causing 10

cases from 12 exposed of gastroenteritis [7]. Cases

had eaten 200 g on average, some had eaten more

than 500 g (taken as 90th percentile of the gamma

distribution describing the variation in intake). E. coli

O157 was isolated from two leftover pieces of jerky,

counts ranged from 3–93 c.f.u./g (used as 5th and

95th percentiles of the gamma distribution describing

the variation in contamination). The distribution

of the dose then is highly skewed, with a mean of

10 000 c.f.u. [4] and a dispersion parameter of 0.305.

Kashiwa, Japan. Contaminated melon eaten by 71

people resulted in 32 infected cases (28 children and

four adults) [8]. The melon dish was found to contain

43 c.f.u./g E. coli O157 and it was estimated that

about 1.1r103 organisms were ingested by each

person in a 25 g melon piece served per child. In the

absence of any indication of overdispersion we

assume Poisson inocula and set the dispersion par-

ameter at 100.

Washington, USA. Major outbreak caused by under-

cooked contaminated ground beef patties at a chain

of fast-food restaurants. In a prior risk assessment [9]

the number of contaminated patties was estimated as

5634, accounting for underreporting, resulting in 398

primary cases [10]. Patties weighed 45 g. Taking into

account that heating partially kills off these bacteria,

it was estimated that the median dose was 23 c.f.u.

[11]. Based on most probable number (mpn) the

average number of organisms in a patty was 183. This

is consistent with a dispersion parameter of 0.2.

California/Washington, USA. Consumption of dry

fermented salami contaminated with E. coli O157

caused 17 cases of enteritis [12]. The consumed

quantity was known for four cases, and ranged from

6–113 g. The total weight of the contaminated batch

was 141 kg which, if consumed completely would

cater for 2778 people exposed, assuming an average

individual intake of 50 g salami. The concentration

of E. coli O157 in recovered packages from retail

was 0.3–0.4 c.f.u./g. Taking into account that both

consumption and contamination are variable, we

arrive at an average dose of 15.6 c.f.u., with an overall

dispersion parameter of 1.603.

Illinois, USA. Waterborne outbreak, caused by swim-

ming in water contaminated by E. coli O157. About

2350 people were exposed, and 12 cases were found

[13]. The dose cannot be directly estimated but E. coli

(not serotyped) were found in water taken a day

before the incident. Based on the numbers counted

VTEC dose response 763



and a presumed intake of 100 ml water [3] the average

intake was estimated as 80 c.f.u. As we had no ob-

servations allowing estimates of the dispersion we

studied two possibilities : low dispersion (dispersion

parameter 100) and high dispersion (dispersion par-

ameter 0.1).

Wyre, UK. Outbreak of E. coli O157 due to con-

taminated cheese. Two 9-kg cheeses were found to be

contaminated with 5–10 c.f.u./g E. coli O157. It was

established that two cases had consumed these con-

taminated cheeses. The total number exposed was

unknown but assuming individual portions are

25–50 g, the two cheeses would represent 360 portions

(if eaten completely). The mean dose has been esti-

mated as 380 c.f.u. [4]. Using dispersion estimates

for both concentration of bacteria and consumed

portions, the overall dispersion could be estimated as

11.23.

HIERARCHICAL DOSE–RESPONSE

MODEL WITH HETEROGENOUS DOSE

Poisson inoculum

For a Poisson inoculum the probability of exposure is

Pexp(CVing)=1xexCVing :

where C is the pathogen concentration and Ving the

ingested volume.

When infection results from independent action of

ingested pathogens, and any pathogen survives (m)

host barriers with probability pm, the probability of

infection is

Pinf (CVingjpm)=1xexCVing pm :

This is the hit theory model for microbial dose

response [14] which can be used to estimate infectivity

of a single infectious unit.

Illness is conditional on infection. Often, asympto-

matic infections may be present in outbreaks, but

analysis for their detection is not usually performed.

We therefore make the pragmatic assumption that

the conditional probability of becoming ill when

infected is 1, implying that infection predicted by the

dose–response model corresponds to illness.

Heterogenous inoculum

For a negative binomial inoculum, when overdis-

persion is modelled as a Poisson-gamma mixture the

probability of exposure is

Pexp(CVing, r)=1x 1+
CVing

r

� �xr

,

where C is the average concentration, and r is

the dispersion parameter (shape parameter of the

gamma-distributed microbial concentration).

And a fixed single-hit probability pm results in a

probability of infection

Pinf (CVingjr, pm)=1x 1+pm
CVing

r

� �xr

:

Heterogenous host–pathogen interaction

Heterogeneity in pm is usually represented by a beta

distribution g(pm|a, b). The probability of infection is

then a mixture

Pinf=
Z 1

pm=0
(1xexpmCVing ) g(pmja, b)dpm

which can be integrated to yield the confluent hyper-

geometric function (1F1)

Pinf (CVingja, b)=1x1F1(a,a+b;xCVing)

�1x 1+
CVing

b

� �xa

:

The latter approximation holds for a@b ; bA1.

This is the well known Beta-Poisson dose–re-

sponse model#. Alternately, in case of heterogenous

exposure

Pinf (CVingjr,a, b)=
Z 1

pm=0

r 1x 1+pm
CVing

r

� �xr� �
g(pmja, b)dpm

which integrates to obtain the following hyper-

geometric function (2F1).

Pinf (CVingjr,a, b)=1x2F1(a, r,a+b;xCVing=r)

# Or, for a discrete inoculum

Pinf=
Z 1

pm=0
[1x(1xpm)

n] g(pmja,b)dpm,

so that

Pinf (nja, b)=1x
C(a+b)C(b+n)

C(b)C(a+b+n)
:
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Statistical analysis

The hierarchical framework for the parameters of

the Beta-Poisson dose–response model is given in

Figure 1. The two levels of the model are represented

by two nested loops. The inner loop describes the

dose–response relation for each individual outbreak,

described by the parameter pair (a( j), b( j)). The

outer loop represents variation among the separate

outbreak dose–response relations, described by the

(joint) distribution of a and b, with (hyper-)par-

ameters (ra, la), (rb, lb). The likelihood is binomial :

for each outbreak k( j,) cases out of n( j,) people ex-

posed to a dose CVing ( j) have been observed.

Parameters are transformed as in Teunis et al. [3] :

since we have only one data-point per outbreak, the

parameters (a, b) of the Beta-Poisson model are

highly correlated: parameter estimation is improved

by transformation to

u=a=(a+b)

v=a+b

�
(1)

so that we are estimating the mean value (u) of the beta

distribution for pm and a quantity that is inversely

related to its variance (for very large positive values

of v the variance tends to zero). Further u is logit-

transformed and v is log-transformed

w=log [u=(1xu)]

z=log (v):

�
(2)

We use normal priors for w and z (mean r, standard

deviation l). Uncorrelated non-informative normal

(x8, 8) hyper-priors were taken for the means of w

and z (r), gamma (0.001, 1000) priors were taken for

the standard deviations of w and z (l).

Note that the dispersion parameter r is given, esti-

mated from the analysis of exposure conditions (see

Table 1). Posterior parameter samples have been

obtained using the Metropolis–Hastings algorithm,

implemented in Mathematica [3].

Predictions of infectivity may be obtained by

sampling from the posterior (joint) distributions of

hyper-parameters ((ra, la), (rb, lb) in Fig. 1). This

can be done by adding an outbreak consisting entirely

of missing data, thereby omitting the inner loop of the

model and causing the Markov chain Monte Carlo

(MCMC) algorithm to sample only from the joint

distributions of (a( ), b( )). With such a procedure

prediction is equivalent to assuming that the infec-

tivity of any unknown VTEC isolate is a sample of the

infectivity ‘universe’ defined by the set of outbreaks

used here.

RESULTS

Hierarchical dose–response models were developed

for the two scenarios : homogenous exposure for all

outbreaks and heterogenous exposure (Illinois, USA:

two possible alternatives ; see Outbreak reports

section 2). Figure 2 shows approximated (by MCMC)

posterior mode dose–response relations for each of

the eight incidents to illustrate the contribution

of each outbreak to the estimated variation in infec-

tivity. These curves were obtained by calculating the

joint posterior (partial) probability for each iteration

in the Markov chain and taking the sample with the

highest value.

Figure 3 shows percentile contours of the group

dose–response relation, generated from the individual

dose–response models in Figure 2. These were ob-

tained by sampling from the prior distributions for w

and z (and, indirectly, a and b).

Compared to the homogenous model, the hetero-

genous one appears not to indicate strongly different

infectivity, but does show increased uncertainty,

as visualized by the wider percentile contours. This

is particularly clear for low-dose extrapolations

[Fig. 3 (c, d)].

Figure 4 shows the probability density of the single-

hit probability pm for both homogenous and hetero-

genous models. An infection risk of a few percent

(1–10%) for a single ingested organism appears quite

probable. Interestingly, the heterogenous model ap-

pears to result in a lower variability (narrower distri-

bution) in pm compared to the homogenous case. Key

statistics for the models are presented in Table 2.

ρα

λα

ρβ

λβ

α(j)

β(j)

dose(j,i)

Pinf(j,i)

n(j,i)

k(j,i)

for(i in 1:ndoses(j))

for(j in 1:Noutbreaks)

Fig. 1. Two-level model for dose–response assessment of
several outbreaks, each with their separate pathogen isolates
and possible susceptibility distributions. Inner loop: dose

groups within outbreaks, i=1, …, ndoses ( j) ; Outer loop:
outbreaks, j=1, …, Noutbreaks. (Note that here ndoses ( j)=1
for all outbreaks.)
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DISCUSSION

The dose–response models in this paper were used to

analyse outbreak data in a hierarchical framework.

This may be called a meta-analysis. The variation in

apparent infectivity among outbreaks is interpreted as

a biological property, i.e. as heterogeneity within and

between outbreaks. From this the dose–response

100 102 104 106 108 1010

0·2

0·4

0·6

0·8

1·0

CVing

Pill

100 102 104 106 108 1010

0·2

0·4

0·6

0·8

1·0

Pill

CVing

(a) (b)

Fig. 2. Posterior mode (approximated fromMCMC) dose–response curves for the outbreak data in Table 1. (a) Homogenous
exposure ; (b) heterogenous exposure.

10-1 100 101 102 103 104 105 106

0·2

0·4

0·6

0·8

1·0

0·0

0·500·800·99

0·40

0·30

0·20

CVing

Pill

0·10

10-1 100 101 102 103 104 105 106

0·2

0·4

0·6

0·8

1·0

0·0

0·500·800·99

0·40

0·30

0·20

Pill

CVing

10-6 10-4 10-2 100 102

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

CVing

Pill

0·50

0·05
0·10

0·01
0·025

0·99
0·30
0·20

10-6 10-4 10-2 100 102

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Pill

0·50

0·05
0·10

0·01

0·99

0·30
0·20

CVing

(a) (b)

(c) (d)

Fig. 3. Contour chart of predicted percentiles of dose–response relation for the outbreak data in Table 1 (a) (c, d)

Extrapolated to low doses (log-log graph). (a, c) Homogenous exposure ; (b, d ) heterogenous exposure.
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relation for each of the individual outbreaks pre-

sented can be generalized to the group level. In doing

this the variation that is potentially present in all

unobserved outbreaks with the same pathogen is

incorporated. This can be seen from the appropriate

coverage displayed in Figure 3.

Variation in the probability of (symptomatic)

infection may have many different causes : variation

in susceptibility of the exposed population, intrinsic

pathogen properties (e.g. genetic variation), condition

of the pathogen (e.g. survival in the food matrix or

water, temperature, previous hosts). The dose–

response model cannot discriminate between these

different sources of heterogeneity because they are

individually unidentifiable. If detailed information

on the condition of the pathogen or, for example,

the immune status of the exposed population was

available, this might allow adaptation of the model

to incorporate such sources of variation [15].

Strachan et al. [4] collated the outbreak data used

here and demonstrated a dose–response model could

be built. However, variability between outbreaks

0·02

0·04

0·06

0·08

pm

f(
p m

)

10-8 10-6 10-4 10-2 0·9 0·999

0·02
0·04
0·06
0·08
0·10
0·12
0·14

pm

f(
p m

)

10-8 10-6 10-4 10-2 0·9 0·999

(a) (b)

Fig. 4. Probability density of the single-hit probability of infection pm (transformed to a logit scale). (a) Homogenous

exposure ; (b) heterogenous exposure.

Table 2. (a) Parameter values for the ‘best fit ’ (posterior mode) curves of the separate outbreaks (cf. Fig. 2)

and the predicted group dose–response model (prediction). (b) Statistics for the Monte Carlo sample of predictive

parameter values: 5, 50 and 95 percentiles, and correlation coefficient

Reference

(a) Posterior mode

Homogenous Heterogenous

~aa ~bb ~aa ~bb

New Deer, UK 1.02r10x2 0.162 18.93 1.90r103

Morioka, Japan 2.69r10x2 0.137 0.651 56.55

Oregon, USA 0.380 37.80 0.693 80.55
Kashiwa, Japan 0.111 4.748 0.302 1.03r102

Washington, USA 1.76r10x2 2.517 0.112 70.37

California/Washington, USA 7.34r10x4 1.66r10x2 7.29r10x4 0.175
Illinois, USA 5.52r10x4 2.13r10x2 2.60r10x3 0.544
Wyre, UK 5.22r10x4 2.45r10x2 5.04r10x4 0.269

Prediction 0.123 2.99 0.248 48.80

(b) Monte Carlo sample

Homogenous Heterogenous

a b a b

Q0.05 5.47r10x4 0.023 2.62r10x4 0.056

Q0.50 0.280 8.702 0.373 39.71
Q0.95 480.4 2.16r10x4 398.9 3.96r104

Corr (a, b) 0.356 0.691
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could only be incorporated when using a beta-

binomial likelihood. This model agrees with the

hierarchical model for median and upper (95%)

percentiles but underestimates the lower (5%) level

of risk where some of the outbreak data-points lie.

When compared to the predictions based on only

the Morioka outbreak, as shown in a previous paper

[3] it is clear that the predictions presented in the

current paper show less uncertainty. Moreover, the

strain of E. coli O157 from the Morioka outbreak

appears to be highly infectious compared to most

other outbreaks.

Recapitulating the findings of Strachan et al. [4]

the Shigella model [1] is contained within the

predicted risk interval. The lower (5%) percentile

contour of the dose–response envelope developed by

Powell et al. [16] more or less coincides with those

in Figure 3, whereas the upper (95%) levels are

underestimated, even more so than in [4]. The rabbit

model [2] underestimates the human risk of E. coli

O157.

Dose–response models are affected by heterogen-

eity both in exposure and in infectivity. Complete

absence of heterogeneity results in an exponential

dose–response relation. Any increase in heterogeneity

results in a less steep dose–response relation. We have

modified the dose–response model to include non-

Poisson exposure. As both sources of heterogeneity

act the same on the shape of the dose–response re-

lation, they cannot usually be identified when fitting

the model to dose–response data. However, a priori

information on the dispersion of the inoculum is

available, which leaves the remaining heterogeneity

to be attributed to infectivity.

For a given slope, obtained by fitting the model

to data, there is a trade-off between heterogeneity in

exposure (which has been specified in this paper) and

also heterogeneity in infectivity. This means that

higher dispersion in exposure results in a narrower

distribution of the infectivity pm. In other words:

given the dose–response data the estimated infectivity

depends on the choices made for dispersion in ex-

posure. This emphasizes the importance of knowledge

about the dose: not only its magnitude, but also its

heterogeneity (dispersion), to obtain unbiased esti-

mates of infectivity.

The outbreaks detailed here show considerable

variation in apparent infectivity : at low c.f.u. doses

high responses are observed in some cases, other

cases, however, appear to have low attack rates at

much higher doses. For this reason a second level of

analysis is necessary: variation among outbreaks. The

observed variation among outbreaks may involve

differences in pathogen conditions, pathogen–host

interactions, and even intake behaviour. We cannot

discriminate between such different causes, and only

use the hierarchical statistical model as a shorthand

description of this complex problem.

The data used in this analysis comprise sympto-

matic cases, as only these can be detected, especially

when a large population is exposed, as in the

Washington beefburger outbreak [10]. Strictly speak-

ing the Beta-Poisson model is an infection dose–

response model where infection does not necessarily

imply illness. In general, asymptomatic infections

may occur, perhaps reflecting natural variation in

susceptibility among hosts [17]. In applying the Beta-

Poisson model to outbreak data, infection is assumed

to imply illness, at sufficiently high doses. For a highly

virulent pathogen like E. coli O157:H7 this seems

reasonable.

Most microbial dose–response information has

been obtained in clinical studies, selecting only mildly

pathogenic organisms, usually propagated in labora-

tory conditions, excluding risk groups from the

volunteer population. In contrast, studying outbreaks

selects for highest pathogenicity, with pathogens

propagated under ‘natural ’ conditions, and prefer-

ence for susceptible groups in the host population.

The dose–response relation in Figure 3 therefore

may represent a ‘worst case’ situation. Not all strains

of E. coli O157:H7 may be equally pathogenic, there-

fore some outbreaks may remain undetected. How-

ever, it seems plausible that most outbreaks are

detected because the most susceptible subjects in the

exposed population become ill. The attack rate for

illness therefore may be lower for some strains (or

foodstuffs, or host populations), but some illness

cases are still observed, and the apparent low patho-

genicity is interpreted as increased heterogeneity in

infectivity.

In absence of human dose–response information

for the pathogen of concern surrogate information

can be used: the same pathogen in surrogate hosts,

or a (presumed) similar pathogen for which human

dose–response data are available.

In toxicology animal models have been employed

as surrogates for human dose response and in analogy

several studies of human pathogens in various ani-

mals have been published. Such studies may provide

useful insights into the mechanisms of microbial

infection and pathogenesis but their significance for
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risk assessment remains uncertain. Most studies

deal with gastrointestinal pathogens. Although some

studies use primates or piglets, for ease of use

mostly rodents are used, and it is doubtful whether

intestinal infection or illness in rats may be compared

qualitatively to intestinal infection or illness in

humans.

One of the main aims of risk assessment is making

quantitative predictions, which may be considered

speculative if based on animal dose–response data.

This is illustrated by the considerable discrepancy

between human and rabbit dose response for E. coli

O157:H7 [2].

The parameters produced by the hierarchical

dose–response model can be readily used in risk as-

sessment. AMonte Carlo sample of (a, b) pairs can be

incorporated into a range of popular risk tools. These

parameters represent variation in infectivity which

is host–pathogen specific but not exposure which is

dependent on the specific outbreaks used to generate

the model, and were accounted for by the dispersion

estimates. These sets of parameter pairs (a, b) can be

obtained from the authors.

The predictive intervals in Figure 3 (a, b) at high

doses seem quite wide compared to most previously

published single-level models. But at low doses [Fig. 3

(c, d)] predictive intervals are fairly narrow due to

the high infectivity of E. coli O157:H7 [3].

CONCLUSIONS

Outbreak data can be used for setting up dose–

response models for microbial pathogens. It is, how-

ever, critical to allow for additional variability,

compared to controlled clinical studies : variation in

infectivity at the level of the individual host as well

as variation between outbreaks, and heterogeneity in

exposure. If heterogenous exposure can be quantified

its influence on the dose–response relationship can be

incorporated to correct infectivity estimates.

Outbreak data as used here are exceedingly rare

in the published literature even though relatively

many outbreaks occur. There is a need for more out-

break data to further validate this model and to gen-

erate corresponding models for other pathogens of

public health concern. This need is exacerbated due

to the ethical concerns associated with human feeding

studies. Only when such information becomes avail-

able can a suite of dose–response models be gen-

erated, resulting in more valid quantitative risk

assessments.
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